Multiple Sound Source Counting and Localization Based on Spatial Principal Eigenvector

نویسندگان

  • Bing Yang
  • Hong Liu
  • Cheng Pang
چکیده

Multiple sound source localization remains a challenging issue due to the interaction between sources. Although traditional approaches can locate multiple sources effectively, most of them require the number of sound sources as a priori knowledge. However, the number of sound sources is generally unknown in practical applications. To overcome this problem, a spatial principal eigenvector based approach is proposed to estimate the number and the direction of arrivals (DOAs) of multiple speech sources. Firstly, a time-frequency (TF) bin weighting scheme is utilized to select the TF bins dominated by single source. Then, for these selected bins, the spatial principal eigenvectors are extracted to construct a contribution function which is used to simultaneously estimate the number of sources and corresponding coarse DOAs. Finally, the coarse DOA estimations are refined by iteratively optimizing the assignment of selected TF bins to each source. Experimental results validate that the proposed approach yields favorable performance for multiple sound source counting and localization in the environment with different levels of noise and reverberation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Beamforming and Synchronization Methods for Epileptic Source Localization, using Simulated EEG Signals

Localization of sources in patients with focal seizure has recently attracted many attentions. In the severe cases of focal seizure, there is a possibility of doing neurosurgery operation to remove the defected tissue. The prosperity of this heavy operation completely depends on the accuracy of source localization. To increase this accuracy, this paper presents a new weighted beamforming method...

متن کامل

The impact of wind-generated bubble layer on matched field sound source localization in shallow water (Research Article)

This paper investigates the effect of the wind-generated bubble layer on the underwater sound source localization in the Persian Gulf shallow-water environment through computer simulation and the matched field processing technique. An underwater sound source of 2-10 kHz located at depths of 10, 45, and 75 m was considered at a distance of 4 km from a linear vertical receiver array. The estimati...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Acoustic Pseudospectrum Based Fault Localization Inmotorcycles

Vehicles generate dissimilar sound patterns under different health conditions. The sound generated by the vehicles gives a clue of some of the faults. Automotive experts diagnose the faults in vehicles based on the produced sound. This paper presents a methodology for fault source localization in motorcycles using the estimated pseudospectra of the sound signals. The pseudospectra are traced to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017